Oxford A Level Sciences
AQA Chemistry

Section 2 Inorganic chemistry 2

 Practice questions| Question number | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 1 (a) | Variable oxidation state
 For example, Fe(II) and Fe (III)
 (Characteristic) colour (of complexes)
 For example, $\mathrm{Cu}^{2+}(\mathrm{aq}) /\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is blue | 1
 1
 1
 1 | Any correctly identified pair Allow two formulae showing complexes with different oxidation states even if oxidation state not given
 Any correct ion with colour scores M3 and M4
 Must show (aq) or ligands OR identified coloured compound (e.g., CoCO_{3}) |
| 1 (b) | Tetrahedral
 $\left[\mathrm{CuCl}_{4}\right]^{2-} /\left[\mathrm{CoCl}_{4}\right]^{2-}$
 Square planar
 $\left(\mathrm{NH}_{3}\right)_{2} \mathrm{PtCl}_{2}$
 Linear
 $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$ | 1
 1
 1
 1
 1
 1 | Any correct complex (Note charges must be correct)
 Any correct complex
 Do not allow linear planar
 $\left[\mathrm{AgCl}_{2}\right]^{-}$etc |
| 1 (c) (i) | $\left[\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{EDTA}^{4-} \rightarrow[\text { CaEDTA }]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$ | 1 | If equation does not show increase in number of moles of particles CE $=0 / 3$ for 7(c)(ii) If no equation, mark on |
| 1 (c) (ii) | 2 mol of reactants form 7 mol of products
 Therefore disorder increases
 Entropy increases / +ve entropy change / freeenergy change is negative | 1
 1
 1 | Allow more moles/species of products
 Allow consequential to 7(c)(i) |

\begin{tabular}{|c|c|c|c|}
\hline 1 (c) (iii) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Moles EDTA }=6.25 \times 0.0532 / 1000 \\
\& =\left(3.325 \times 10^{-4}\right)
\end{aligned}
\] \\
Moles of \(\mathrm{Ca}^{2+}\) in \(1 \mathrm{dm}^{3}=3.325 \times 10^{-4} \times 1000 / 150\) \(=\left(2.217 \times 10^{-3}\right)\) \\
Mass of \(\mathrm{Ca}(\mathrm{OH})_{2}=2.217 \times 10^{-3} \times 74.1\)
\[
=0.164 \mathrm{~g}
\]
\end{tabular} \& 1
1
1
1 \& \begin{tabular}{l}
Mark is for \(\mathrm{M} 1 \times 1000 / 150\) OR M1 \(\times 74.1\) \\
If ratio of \(\mathrm{Ca}^{2+}\) : EDTA is wrong or 1000 / 150 is wrong, CE and can score M1 only \\
This applies to the alternative \\
M1 \(\times 74.1 \times 1000 / 150\) \\
Answer expressed to 3 sig figs or better \\
Must give unit to score mark Allow 0.164 to 0.165
\end{tabular} \\
\hline 2 (a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& 2 \mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO}_{4}{ }^{2-} \\
\& 2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}
\end{aligned}
\] \\
two negative ions repel / lead to reaction that is slow / lead to reaction that has high \(E_{a}\) \\
iron able to act because changes its oxidation state \\
With iron ions have alternative route / route with lower activation energy
\end{tabular} \& 1
1
1
1
1 \& allow iron has variable oxidation state \\
\hline 2 (b) (i) \& \begin{tabular}{l}
\[
\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}+\mathrm{H}^{+}
\] \\
\(\mathrm{Fe}^{3+}\) ion has higher charge (to size ratio) (than \(\mathrm{Fe}^{2+}\)) \\
increases polarisation of co-ordinated water / attracts O releasing an \(\mathrm{H}^{+}\)ion / weakens \(\mathrm{O}-\mathrm{H}\) bond
\end{tabular} \& 1

1 \& can have $\mathrm{H}_{2} \mathrm{O}$ on LHS and $\mathrm{H}_{3} \mathrm{O}^{+}$on R do not penalise further hydrolysis equations allow high charge density

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 2 (b) (ii) \& \begin{tabular}{l}
\[
\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{Fe}^{3+}
\] \\
moles dichromate \(=23.6 \times 0.218 / 1000\) \(=5.14 \times 10^{-4}\) \\
moles iron \(=5.14 \times 10^{-4} \times 6=0.00309\) \\
mass iron \(=0.00309 \times 55.8=0.172\) \\
\(\%\) by mass of iron \(=0.172 \times 100 / 0.321=53.7 \%\)
\end{tabular} \& 1

1
1
1
1

1 \& | OR 6 mol Fe(II) react with 1 mol dichromate |
| :--- |
| If factor of 6 not used max $=3$ for M2, M4 and M5 |
| e.g., 1:1 gives ans= 8.93 to 8.98\% (scores 3) |
| M3 also scores M1 |
| Mark is for moles of iron 55.8 conseq |
| Allow use of 56 for iron |
| Answer must be to at least 3 sig figures allow 53.6 to 53.9 |
| Mark is for mass of iron $\times 100$ / 0.321 conseq |

\hline 2 (c) \& | brown precipitate / solid |
| :--- |
| bubbles (of gas) / effervescence/ fizz $\begin{aligned} & 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \rightarrow \\ & 2 \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ | \& 1

1

1 \& | Allow red-brown / orange solid Not red or yellow solid |
| :--- |
| Allow gas evolved / given off Do not allow just gas or CO_{2} or CO_{2} gas |
| Allow $\begin{aligned} & 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}^{2-} \rightarrow \\ & \quad 2 \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ |
| OR Use of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ |

\hline 3 (a) \& A catalyst in the same phase as the reactants \& 1 \&

\hline 3 (b) (i) \& A reaction in which a product acts as a catalyst \& 1 \& Do not accept: self-catalysing. You could also have Mn^{3+} as a catalyst, since it is involved in the reaction and is regenerated.

\hline 3 (b) (ii) \& Mn^{2+} \& 1 \&

\hline 3 (c) (i) \& | $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$ |
| :--- |
| The reducing agent is CO . | \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$
\] \& Accept: $4 \mathrm{CO}+2 \mathrm{NO}_{2} \rightarrow 4 \mathrm{CO}_{2}+$ N_{2}

\hline 3 (c) (ii) \& | Pt, Pd, or Rh |
| :--- |
| Deposited on a ceramic honeycomb or a mesh or sponge which increases the surface area of the catalyst. | \& \[

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
$$
\] \&

\hline
\end{tabular}

Oxford A Level Sciences
AQA Chemistry

4 (a)	These are examples of answers. There are other equations possible from the species given in the question.	8	
4 (a) (i)	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}+6 \mathrm{H}_{2} \mathrm{O}\right.$		Accept: the reverse equation. There is one mark for the two complex ions and one for the balancing.
4 (a) (ii)	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow \mathrm{CoCl}_{4}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$		One mark for the two complex ions and one for the balanced equation.
4 (a) (iii)	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+3 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{4-}+6 \mathrm{H}_{2} \mathrm{O}$		One mark for the two complex ions and one for the balanced equation. All substitutions are allowed except NH_{3} by $\mathrm{H}_{2} \mathrm{O}$.
4 (a) (iv)	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]^{2+}+\right.$ EDTA $^{4-} \rightarrow[\mathrm{Co}(\text { EDTA })]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$		One mark for the two complex ions and one for the balanced equation. You could also have $\mathrm{H}_{2} \mathrm{O}$ or NH_{3} substituted by $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$. Accept NH_{3} or Cl^{-}substituted by EDTA ${ }^{4-}$.
4 (b) (i)	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	4	
4 (b) (ii)	$\mathrm{Fe}(\mathrm{OH})_{2}$ or $\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$		Accept: the simple hydroxide formula but it is actually the octahedral complex which is made.
4 (b) (iii)	Fe^{2+} is oxidised to Fe^{3+}.		Accept: oxidised to or $\mathrm{Fe}(\mathrm{OH})_{3}$ by oxygen in the air.
5 (a)	$\mathrm{NaOH}(\mathrm{s})+(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$	2	1 mark for correct products, 1 mark for correct reactants
5 (b)	Sodium hydroxide is a strong base because it is fully dissociated into ions in aqueous solution.	1	
5 (c)	No. All solid sodium hydroxide is the same and cannot be more than fully dissociated, nor can solid sodium hydroxide be made more concentrated.	1	
5 (d)	ΔH is negative. The reaction is exothermic.	1	
5 (e)	If a little water is added to all the sodium hydroxide, the water will get very hot and could be dangerous. If the solid is added to the whole litre of water the heat will be spread out over all the water which will therefore become less hot.	1	
5 (f)	$2.5 \mathrm{~mol} \mathrm{dm}^{-3}$	1	
5 (g)	890	1	
5 (h) (i)	742 g	2	

Oxford A Level Sciences
AQA Chemistry

Section 2 Inorganic chemistry 2

 Practice questions| 5 (h) (ii) | The reaction may not go to completion some of the solution could leak away before the reaction is complete. | 1 1 | |
| :---: | :---: | :---: | :---: |
| 5 (j) | It is ionically rather than covalently bonded. | 1 | |
| 6 (a) | An electron pair on the ligand
 Is donated from the ligand to the central metal ion | 1 1 | |
| 6 (b) | Blue precipitate
 Dissolves to give a dark blue solution $\begin{aligned} & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}^{+}} \\ & \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+} \\ & +2 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ | 1 | |
| 6 (c) | $\begin{aligned} & {\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}} \\ & \quad \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{NH}_{3} \end{aligned}$ | 1 | |
| 6 (d) | $\mathrm{Cu}-\mathrm{N}$ bonds formed have similar enthalpy / energy to $\mathrm{Cu}-\mathrm{N}$ bonds broken
 And the same number of bonds broken and made | 1 1 | |
| 6 (e) | 3 particles form 5 particles / disorder increases because more particles are formed / entropy change is positive
 Therefore, the free-energy change is negative | 1 1 | M2 can only be awarded if M1 is correct |
| 7 (a) | \mathbf{Q} is calcium or magnesium
 Bromide
 R is aluminium
 Chloride
 S is iron(III)
 Sulfate | 1 1 1 1 | Mark this question independently |
| 7 (b) | $\begin{aligned} & \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4} \\ & {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}} \\ & 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \rightarrow 2 \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3} \\ & +3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2} \\ & {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{FeCl}_{4}\right]^{-}+6 \mathrm{H}_{2} \mathrm{O}} \end{aligned}$ | 1 1 1 | |

8 (a)	A transition metal is an element that forms at least one ion with a partially full d-shell of electrons.	1	
8 (b)	Scandium is a d-block element because its highest energy electron is in a d-shell. However it is not a transition metal as scandium only forms Sc^{3+} ions in which the d-shell is empty	1 1	
9 (a)	A complex ion is a metal ion surrounded by ligands. A ligand is an ion or molecule with a lone pair of electrons that it can donate to form a co-ordinate bond	1 1	
9 (b) (i)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}$	1	
9 (b) (ii)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$	1	
9 (c) (i)		1	
9 (c) (ii)	Octahedral	1	

